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Abstract: In Korean, spacing is very important to understand the readability and context of sentences.
In addition, in the case of natural language processing for Korean, if a sentence with an incorrect
spacing is used, the structure of the sentence is changed, which affects performance. In the previous
study, spacing errors were corrected using n-gram based statistical methods and morphological
analyzers, and recently many studies using deep learning have been conducted. In this study, we try
to solve the spacing error correction problem using both the syllable-level and morpheme-level.
The proposed model uses a structure that combines the convolutional neural network layer that can
learn syllable and morphological pattern information in sentences and the bidirectional long short-
term memory layer that can learn forward and backward sequence information. When evaluating
the performance of the proposed model, the accuracy was evaluated at the syllable-level, and also
precision, recall, and f1 score were evaluated at the word-level. As a result of the experiment, it was
confirmed that performance was improved from the previous study.

Keywords: spacing correction; syllable embedding; morpheme embedding; convolutional neural
network; bidirectional long short-term memory

1. Introduction

Word spacing is the boundary between words that construct a sentence. Text data
with spacing errors can affect performance in various natural language processing (NLP)
tasks. For example, two sentences, “abeoji-ga bang-e deuleoga-sin-da” (Father enters the
room) and “abeoji gabang-e deuleoga-sin-da” (Father enters the bag), have only difference
in word spacing, but the semantics of the two sentences are completely different. Therefore,
it is important to reduce semantic ambiguity in the sentences by finding correct spaces
before performing NLP tasks. Even in the case of speech-to-text, there are frequent spacing
errors. A more complete sentence can be generated by performing spacing correction with
speech-to-text post-processing.

Research on the correction of Korean word spacing is evolving from a rule-based, statistical-
based, and probability-based method [1–4] to a deep neural network method [5–13]. A word
dictionary is constructed, and the word dictionary is searched by moving the sentence at
the syllable level, and the spacing result is generated based on word score. In addition,
this study proposed a method to improve performance by applying heuristic algorithms [1].
There was a study that corrected word spacing by using probability weights through the
bi-gram and voting method to determine where to insert spacing [2]. There was a study
that suggested a word spacing model using a structural support vector machine (SVM)
by attaching syllable-based part-of-speech (POS) tags to sentences with no spacing [3].
The word spacing correction problem was defined as a sequence labeling problem, and a
conditional random field (CRF), which has an excellent performance in solving the se-
quence labeling problem and was applied to the word spacing correction [4]. The data
composed of morpheme-level was converted to a POS tag at the syllable-level, and the
data were composed using syllable and noun unit n-gram and POS distribution vector
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as additional features. Then, a method of correcting the word spacing error was pro-
posed through an architecture in which bidirectional LSTM (Bi-LSTM) and CRF were
combined [6]. There was a study that proposed a method of correcting word spacing errors
using a sequence-to-sequence model, specialized in processing complex and large sequence
data by stacking LSTMs [9].

Most previous studies construct the word spacing system using one of the features of
syllables, words, and morphemes in sentences. In addition, the model of previous studies
was constructed using convolutional neural networks (CNN), recurrent neural networks
(RNN), and CRF. There are studies that show better performance using both CNN and
LSTM in combination than to construct a model using them individually [10,11]. In addition,
there is a study in which the structure that combines CNN and LSTM outperforms the
structure that combined LSTM and CRF in the part-of-speech tagging task that detects
metaphors in sentences [12]. Therefore, we constructed a model of the architecture that
combines CNN and Bi-LSTM. We extracted local features of syllables and morphemes using
multiple filter CNN and extracted order information through Bi-LSTM. It concatenates the
LSTM output of syllables and morphemes information, passes through the fully connected
layer, and finally outputs the space tag.

The rest of this paper is organized as follows. Section 2 describes the characteristics,
collection, and preprocessing of the Korean text dataset. In Section 3, we describe the model
architecture used for word spacing correction. In Section 4, we compare the experimental
results with the proposed model with existing studies. Finally, we present the conclusion
and future work of this study in Section 5.

2. Data

The text data are Korean sentences and are divided into three levels: Syllable, mor-
pheme, and word. Table 1 is an example of dividing the sentence “abeoji-ga bang-e
deuleoga-sin-da” (Father enters the room) in syllable, morpheme, and word. “/” means the
delimiter separating each level. A syllable is a unit of speech that the speaker and listener
think of as a bundle. It is larger than a phoneme and smaller than a word (morpheme).
In Korean, syllables consist of consonants and vowels or a single vowel. In the Table 1
example sentence, syllables are [a, beo, ji, -ga, bang, -e, deul, eo, ga, sin, -da]. A morpheme
is the smallest unit of speech that has meaning, and each separate morpheme has a mean-
ing. Morphemes are [abeoji, -ga, bang, -e, deuleoga, sin-da]. Words (usually called eo-jeol
in Korean) usually coincide with the unit of spacing and may be formed by attaching a
josa to a che-on (noun, pronoun, number in English) or attaching an ending to the stem.
Words are [abeoji-ga, bang-e, deuleoga-sin-da]. Syllable and morpheme level are used as
input features. In addition, since word-level is a spacing unit, it is used to evaluate whether
the word spacing is corrected.

Table 1. Examples of Korean text levels.

Level Example

Sentence
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Level Example 

Sentence 
아버지가 방에 들어가신다. 

(Father-nominative bang-locative enter-honorific-ending.) 

Pronunciation abeoji-ga bang-e deuleoga-sin-da. 

English Father enters the room 

Word abeoji-ga/bang-e/deuleoga-sin-da. 

Morpheme abeoji/-ga/bang/-e/deuleoga/sin-da/. 

Syllable a/beo/ji/-ga/bang/-e/deul/eo/ga/sin/-da/. 

Most of the word spacing correction studies use Sejong corpus data. The Sejong cor-

pus is data provided by the National Institute of Korean Language and has two categories, 

.
(Father-nominative bang-locative enter-honorific-ending.)

Pronunciation abeoji-ga bang-e deuleoga-sin-da.
English Father enters the room
Word abeoji-ga/bang-e/deuleoga-sin-da.

Morpheme abeoji/-ga/bang/-e/deuleoga/sin-da/.
Syllable a/beo/ji/-ga/bang/-e/deul/eo/ga/sin/-da/.

Most of the word spacing correction studies use Sejong corpus data. The Sejong corpus
is data provided by the National Institute of Korean Language and has two categories,
written and spoken language [14]. The written language corpus consists of newspapers
or magazines. Spelling and word spacing rules of sentences are relatively better than the
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spoken language corpus. That is why the Sejong written language corpus is used in the
study. In addition, we crawled and collected news articles with good spacing rules.

The collected Sejong corpus and news articles have HTML tags, special characters,
etc., which are not necessary to process word spacing. We removed the HTML tags and
special characters. We have not removed the frequently used special characters such as
quotes, commas, periods, etc. The same preprocessing was applied to both data collected.
After the preprocessing was completed, about 3 million sentences from the Sejong corpus
and about 7 million sentences from collected news articles were combined to form a total
of about 10 million sentences. The total number of words was about 12 million, and the
number of syllables was about 46 million.

Table 2 is a statistical value of the number of syllables and words appearing in each
preprocessed sentence. The maximum number of syllables in a sentence is 350, which is
very different from the average number of syllables 39.183. If all sentences are padded with
a maximum syllable length of 350 to be used as an input sentence of the model, a gradient
vanishing problem may occur because the padding value occupies a large proportion of
the sentence. Therefore, we reconstructed the sentences thus that they can have similar
lengths. When deciding whether or not there is spacing, not all words in a sentence are
needed, only 2–3 words before and after. Through this idea, we reconstructed the sentences
thus that they could have 6 to 13 words to sample sentences of similar length. It was
completed by slicing 6 to 13 words from the beginning of the document continuously.
The maximum number of syllables in reconstructed sentences is 76. If the reconstructed
sentences are padded with the same length, the proportion of the padding value is smaller
than before, thus the gradient vanishing problem is partially compensated. In this way,
the processing was performed by removing unnecessary elements from the sentence and
sampling sentences with similar length. Finally, the number of sentences used in this study
is 13 million.

Table 2. The average and maximum value of the number of syllables and words in each sentence.

Level Average Max

syllable 39.183 350
word 9.333 79

3. Word Spacing Correction Model

In this Section, the input/output process of the model used for word spacing correction
training is explained, and the overall architecture of the model is shown in Figure 1. We have
shared the model structure used in this study on the github repository (https://github.
com/JeongMyeong/KoAutoSpacing-KAS). Detailed model parameters are described in
the experiment Section.
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3.1. Integer Encoding

This study defined the problem of correcting Korean word spacing as a sequence
labeling problem that sequentially attaches spacing tags to syllables in sentences. We used
two input types of sequence information in sentences to train the word spacing correction
model. The first is a sequence in which syllables in a sentence are encoded as integers,
and the second is a sequence in which morphemes are encoded as integers. For example,
“abeoji-ga bang-e deoleoga-sin-da.” (“Father entered the room”) when there is a sentence,
Tables 3 and 4 show examples of encoding sentences using syllable and morpheme en-
coding values. The maximum value of integer encoding of syllables is defined as the
unique count of all syllables appearing in the training data. However, since the type of
morphemes is limited according to the morpheme analyzer used, the number of unique
integers is limited. We represented the morpheme sequence as an integer with the start,
middle, and end of the morpheme. For example, if the start of the morpheme is an integer
N, the middle is set to N, and the end is set to N + 1. Therefore, the start and end of the
morpheme can be known through the encoded integers.

Table 3. Morpheme level encoding example.

Morpheme Start Middle End

Common Noun 1 1 2

Nominative postposition 3 3 4

Adverbial postposition 5 5 6

Verb 7 7 8

Prefinal ending 9 9 10

Period 11 11 12

Table 4. Example of converting sentences to encoding values.

Sentence a beo ji -ga bang -e deol eo ga -sin -da .

Syllable 1 2 3 4 5 6 7 8 4 9 10 11

Morpheme 1 1 2 4 2 6 7 7 8 9 10 12

3.2. Embedding

Methods of embedding elements in vector space include language model [15,16],
word2vec [17,18], dependency-based context [19], global vectors of words [20], word repre-
sentation through the artificial neural networks. In this study, syllables and morphemes
were embedded in vector space using word representation through artificial neural net-
works. The embedding layer places elements in the vector space. Furthermore, as the
model was trained, elements with similar roles are placed closer together in vector space.
Figure 2 shows the conversion of an integer sequence to a vector sequence through an
embedding layer. When the [w1, w2, . . . , wn−1, wn] integer sequence is input to the em-
bedding layer, the wn values of the sequences are converted into the m-dimensional vector
value, xn, and converted into a [x1, x2, . . . , xn−1, xn] vector sequence. The term w here
means the integer value of a syllable or morpheme. After each integer value was converted
to the m-dimensional value, the m× n sequence of vectors was made.
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3.3. Multiple Filter 1-dimensional Convolutional Neural Networks

CNN is known to have excellent performance not only in image processing but also
in NLP. The convolution layer in NLP is characterized by 1-dimension operation on text
data [21–24]. Figure 3 describes the process of extracting local features from a vector
sequence through multiple filter 1-dimensional CNN (1D-CNN). The vector sequence of
syllables and morphemes is expressed as follows:

x1:n = [x1, x2, x3, . . . , xn−1, xn] (1)

where x is syllable or morpheme vector value and n is the position of the element. The term
x1:n here is the concatenation of elements from 1 to n. The convolution operation for each
syllable or morpheme is expressed as follows:

ci = f (w·xi:i+h−1 + b) (2)

where f is a non-linear function like ReLU and w is the weight value. The term h and
b is the filter window size and bias. The feature maps extracted by CNN is expressed
as follows:

ch = [c1, c2, . . . , cn−h, cn−h+1] (3)

C =
[
ca, cb, . . . , ck

]
(4)

where ch is the feature map extracted by the filter window of size h. C is concatenated
feature maps extracted with multiple filter sizes of {a, b, . . . , k}. In this study, multiple 1D
CNN extracted local features from syllable and morpheme sequences. Then these values
were concatenated and passed to the next layer.
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3.4. Bidirectional Long Short-Term Memory

Long Short-Term Memory (LSTM) is a network that complements the gradient van-
ishing problem and long-term dependency problem in RNN. Figure 4 describes Bi-LSTM
structure with LSTM operations forward and backward. Bi-LSTM has the advantage of be-
ing able to specify sentence information by training the forward and backward information
of the sequence [25]. In the model proposed in this study, C, the output result of multiple fil-
ter 1D-CNN, was used as the input of Bi-LSTM. As the forward sequence,

[
Ca, Cb, . . . , Ck

]
was used as the input of the forward LSTM, and backward, the reverse of the forward
sequence,

[
Ck, . . . , Cb, Ca

]
was used as the input of the backward LSTM. h f and hb rep-

resent the forward and backward output values of LSTM respectively. Final outputs of
Bi-LSTMs were [h f , hb], which concatenate h f and hb. Equations (5)–(10) are an equa-
tion that derive the output of the LSTM. xt, ht, ct, ft, it, ot mean input, output, cell state,
forget gate, input gate, and output gate, respectively. Equation (5) shows what infor-
mation is to be discarded from the cell state, and the weight is determined through the
sigmoid layer. Equation (6) represents obtaining new information by deriving the input
gate. The hidden state is derived through Equation (7). The cell state is derived through
Equation (8), and the output gate is derived through Equation (9). Finally, the output is
derived from Equation (10).

ft = σ
(

W f · [ht−1, xt ] + b f

)
(5)

it = σ(Wi·[ht−1, xt] + bi) (6)

C̃t = tanh(Wc·[ht−1, xt] + bc) (7)

Ct = ft � Ct−1 + it � C̃t (8)

ot = σ(Wo·[ht−1, xt] + bo) (9)

ht = ot � tanh(Ct) (10)
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In the proposed model, an integer sequence in levels of syllables and morphemes
had passed through the embedding layer, multiple filter 1D-CNN and Bi-LSTM. Then,[

h f
s , hb

s

]
and

[
h f

m, hb
m

]
, the outputs of Bi-LSTM, are concatenates to combine syllables and

morphemes weights to create
[

h f
s , hb

s , h f
m, hb

m

]
. h is the output value of LSTM, and s, m is

syllable and morpheme. The combined information passes through the fully connected
layer and is finally output through the last output layer. The activation function of the
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output layer is softmax to indicate the probability value. There are three probability values:
Spacing, non-spacing, and padding.

4. Experiment
4.1. Labeling

Label sequences were created under the assumption that the spacing rules of the
collected data were well followed. The rules for tagging spacing were as follows. If the
spacing was required after the current syllable, it was tagged as 1, and all others were
tagged as 2. Furthermore, the padding value to match all sentences with the same length
was tagged as 0.

4.2. Data Feed

To train the spacing correction model, the Sejong corpus and the crawled news article
sentences were preprocessed and approximately 13 million sentences were used. 1000 sam-
ples of the Sejong corpus were separated as test sentences to measure the final performance.
For the remaining sentences, about 10.5 million training sentences and 2.5 million valida-
tion sentences were used at a 8:2 ratio. Since the Sejong corpus was used to measure the
performance in previous studies, this study also used it separately from the Sejong corpus
as the final performance test sentences. To accurately measure the final performance of
word spacing correction, the spacing of the test sentences was reviewed and used.

4.3. Parameters

Syllable and morpheme-level sequences were padded to the same length by padding
values for training. Among reconstructed sentences, the length of the sentence with the
maximum length of syllables was 76. Therefore, we set the length of all sentences to 100,
which was slightly larger than 76. The dimension of the embedding layer used to convert
integer-encoded syllable and morpheme sequences into vector sequences was set to 128 and
64, respectively. Since there were fewer types of morpheme than syllables, we set it to
64 dimensions, which were smaller than 128 dimensions. The number of CNNs used in
multiple filter 1D-CNN was 4. The filter size was set to 2, 3, 4, 5, respectively, and the filter
unit was set to 64. In Bi-LSTM, the number of LSTM units was set to 128 thus that the
forward and backward outputs were concatenated to have an output value of 256 sizes.
The dropout of the LSTM was set to 0.5. The activation function of the multiple filter
1D-CNNs was set to ELU, and the activation function of the LSTM was set to tanh. As an
optimization function of the model, Adam was used, and the learning rate started from
the initial value 1e-3 and gradually decreased to 1e-6, and a polynomial decay method
was used.

4.4. Train

Three experiments were conducted: When only the syllable-level sequence was used,
when only the morpheme-level sequence was used, and both the syllable and morpheme-
level sequence were used as the spacing correction experiment. When using both syllable and
morpheme-level, we trained the model structure in Figure 1. Each of only the syllable-level
and only the morpheme-level model had no concatenation after Bi-LSTM in Figure 1.

4.5. Metric

To evaluate the performance of the spacing correction model, evaluate tag accuracy,
word recall, precision, and f1 as follows:

Accuracytag =
the predicted correct tags

the actual entire tags
× 100 (11)

PrecisionWord =
the predicted correct words
the predicted entire words

× 100 (12)
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RecallWord =
the predicted correct words

the actual entire words
× 100 (13)

F1 scoreword = 2 ∗ precisionword ∗ recallword
precisionword + recallword

(14)

Equation (11) is a metric that measures whether tag classification is correct.
Equations (12) and (14) are a metric that evaluates at word-level whether a sentence is
correctly completed when a predicted tag is inserted into a sentence.

4.6. Evaluation and Result

Table 5 shows the spacing correction performance of the proposed model. According to
experimental results, morpheme-level, syllable-level, and both syllable and morpheme-level
were used in order of good performance. When both the syllable and morpheme were used,
the advantages of syllable and morpheme were combined to achieve better performance.

Table 5. Performance result of spacing correction. Marked in bold and underline is the best performance.

Input
Tag Word

Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Morpheme 98.29 93.00 92.96 92.98
Syllable 98.70 95.11 93.75 94.43

Syllable and morpheme 99.13 96.54 95.59 96.06

Table 6 shows the spacing correction performance of the proposed model. According to
experimental results, morpheme-level, syllable-level, and both syllable and morpheme-level
were used in order of good performance. When both the syllable and morpheme were used,
the advantages of syllable and morpheme were combined to achieve better performance.

Table 6. Comparison with previous spacing studies. Marked in bold and underline is the best performance.

Model
Tag Word

Accuracy (%) Precision (%) Recall (%) F1 Score (%)

2015 [1] 98.06 92.27 94.15 93.20
2016 [13] 98.32 92.68 91.96 92.32
2018 [9] - 93.72 94.27 93.99
2019 [8] 98.53 95.06 93.46 94.26

Proposed model 99.13 96.54 95.59 96.06

Table 6 shows the performance of the previous study of spacing correction and the
performance of the proposed model. Previous studies [1,8,9,13] used the Sejong corpus as
test data to measure performance. In this study, the Sejong corpus was also used as test data.
Reference [1] trained a spacing correction model using word frequency dictionary and syl-
lable frequency dictionary-based word information and a morpheme analyzer, resulting in
an f1 score of 93.2%. Reference [13] used a combination of unigram, bigram, trigram, and a
noun dictionary. As a result of training a model combining gated recurrent unit (GRU) and
CRF, an f1 score performance of 92.32% was achieved. Reference [9] constructed an encoder
and a decoder using an LSTM-based sequence to sequence model. The attention mech-
anism technique was applied to the decoder, and the model was trained using sentence
data limited to a maximum of 10 words. As a result, 2019 achieved an f1 score of 93.99%.
Reference [8] created a feature vector through a Bi-LSTM encoder and constructed a model
using a linear chain CRF. As a result of performance evaluation, an f1 score of 94.26% was
achieved. In this study, a model was constructed with an architecture combining multiple
filter 1D-CNN and Bi-LSTM, and a spacing correction model was trained by inputting two
types of syllable-level and morpheme-level sequences. As a result, the performance of the
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proposed spacing correction model was 96.06%, which was about 1.8% higher than the
previous study.

5. Conclusions

This study proposed to use both the syllable level and morpheme level of Korean.
A model with a structure combining multiple filter 1D-CNN and Bi-LSTM is used, and in-
formation of syllable-level and morpheme-level is combined in the second half of the
model. Spacing correction performance is evaluated through the Sejong corpus. As a result
of the performance evaluation, when both the syllable and morpheme level were used,
better performance was achieved compared to when only the syllable or morpheme level
was used. The combination of syllable level and morpheme level information in the second
half of the model was an advantage for spacing correction. As future studies, we will
compare and analyze how much performance changes before and after spacing correction
in various NLP tasks.
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